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Simulations of a single membrane between two walls using a Monte Carlo method

Nikolai Gouliaev* and John F. Nagle†

Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
~Received 13 January 1998!

Quantitative theory of interbilayer interactions is essential to interpret x-ray scattering data and to elucidate
these interactions for biologically relevant systems. For this purpose Monte Carlo simulations have been
performed to obtain pressureP and positional fluctuationss. An alternative method, called Fourier Monte
Carlo ~FMC!, that is based on a Fourier representation of the displacement field, is developed and its superi-
ority over the standard method is demonstrated. The FMC method is applied to simulating a single membrane
between two hard walls, which models a stack of lipid bilayer membranes with nonharmonic interactions.
Finite-size scaling is demonstrated and used to obtain accurate values forP and s in the limit of a large
continuous membrane. The results are compared with perturbation theory approximations, and numerical
differences are found in the nonharmonic case. Therefore the FMC method, rather than the approximations,
should be used for establishing the connection between model potentials and observable quantities, as well as
for pure modeling purposes.@S1063-651X~98!10107-1#

PACS number~s!: 87.10.1e, 02.70.Lq
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I. INTRODUCTION

Recent research on lipid bilayers@1# has contributed to
the important biological physics goal of understanding a
quantifying the interactions between membranes by pro
ing high resolution x-ray scattering data. From these data
magnitude of fluctuations in the water spacing betwe
membranes in multilamellar stacks is obtained. This ena
extraction of the functional form of the fluctuational force
originally proposed by Helfrich@2# for the case of hard con
finement. For systems with large water spacings, the Helf
theory has been experimentally confirmed@3#. For lecithin
lipid bilayers, however, the water spacing is limited to 20
or less. For this important biological model system, our d
show that a theory of soft confinement with a different fun
tional form is necessary; this is not surprising because in
bilayer interactions consist of more than hard-wall, i.e., ste
interactions.

The theory of soft confinement is even more difficult th
the original Helfrich theory of hard confinement. Progre
has been made by modeling the stack of interacting flex
membranes by just one flexible membrane between two r
walls @4,5#. Even with this simplification, however, th
theory involves an uncontrolled approximation using fir
order perturbation theory and a self-consistency condition
order that the interbilayer interaction may be approxima
by a harmonic potential@5#. We have obtained inconsisten
results when applying this theory to our data~unpublished!.
Possible reasons are~i! the theory is quantitatively inaccurat
or ~ii ! the single membrane model is too simple. The imm
diate motivation for this paper is to test possibility~i!.

In order to obtain accurate results for a system with re
istic nonharmonic potentials, we use Monte Carlo~MC!
simulations. The particular MC method developed in t
paper will be called the FMC method because it uses

*Electronic address: gouliaev@andrew.cmu.edu
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Fourier representation for the displacement of the membr
rather than the customary pointwise representation, wh
will be called the PMC method. The main advantage of
FMC method is that the optimal step sizes do not decreas
more and more amplitudes are considered. In contrast
PMC simulations, the optimal step sizes decrease as the
verse of the density of points in one dimension, because
bending energy becomes large when single particle ex
sions make the membrane rough. Because of this, relati
large moves of the whole membrane are possible with
FMC method, but not the PMC method. This produces ra
sampling of the whole accessible phase space, while resp
ing the membrane’s smoothness. The resulting time se
have moderate autocorrelation times@6# that do not increase
substantially as the membrane gets larger and/or more
plitudes are taken into account. Even though each Mo
Carlo step takes longer, FMC still outperforms PMC by
wide margin. It then becomes possible to carry out subs
tial simulations on a standalone workstation rather tha
supercomputer@7# and to obtain accurate results for a sing
membrane subject to realistic potentials with walls, and e
for a stack of such membranes~to be described in a future
paper! @8#.

Section II defines the membrane model and the phys
quantities simulated in the paper. Section III describes
FMC method and also gives some important details that
used to speed up the code. In Sec. IV the method is teste
an exactly solvable model, namely, one that has only h
monic interactions with the walls. This test also allows e
amination of the system properties and the convergenc
FMC results for an infinitely large, continuous membrane.
Sec. V the FMC method is applied to a single membra
with realistic, nonharmonic interactions with the walls. Se
tion VI makes a detailed comparison of the FMC method a
the standard PMC method. This section shows that the F
method not only converges faster to average values for c
tinuous membranes, but also gives smaller stochastic er
Finally, Sec. VII compares simulation results with those o
881 © 1998 The American Physical Society
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tained using the analytic first-order theory of Podgornik a
Parsegian@5# and from experiment@1#.

II. SINGLE MEMBRANE SYSTEM

At the atomic scale a lipid membrane is composed
complex lipid molecules and many simulations are p
formed at this scale@9–11#. However, for modeling the
structure factor for low angle x-ray scattering~in contrast to
modeling the form factor!, it is customary and appropriat
@12–15# to model the membrane as an infinitely thin flexib
sheet as shown in Fig. 1.

The membrane undulates with instantaneous fluctuat
in the z direction, given byu(x,y), subject to periodic
boundary conditions. The model energyW is a sum of bend-
ing energy with a bending modulusKc and an energy of
interaction with the walls,

W5
Kc

2 E ~Du!2dx dy1E wa~u!dx dy. ~1!

Since each wall is a surrogate for a neighboring membran
a stack, and since it is desired to obtain physical proper
per membrane, the interaction potential is given by the av
age wa(u)5@V(a1u)1V(a2u)#/2 of the interactionsV
with each wall and the corresponding volume of the syst
per membrane is thenaL2. For a separationz between a wall
and the membrane the interaction potential will be based
the standard form

V~z!5Ale2z/l2
H

12pz2 , ~2!

where the first term on the right hand side is a repuls
hydration potential@5# and the last term is an approximat
attractive van der Waals potential. The divergence in the
der Waals potential asz→0 in Eq. ~2! is quite artificial;
physically, it is masked by stronger steric repulsions at sm
z @16#. This is corrected in this paper by including only
finite number of termsmmax in a power series expansion o
1/z2 aboutu50. It is shown later that a wide range ofmmax
gives nearly the same result, sommax is not a critical param-
eter and power series suffice to represent the van der W
potential satisfactorily for the most probable values ofz but
avoid including artificial traps near the walls. Other form
besides Eq.~2! can be treated as well.

FIG. 1. Fluctuating single membrane, constrained between
hard walls.
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The first important quantity, obtained directly from th
simulation, is the mean-square fluctuations2 in the water
spacing. In Fig. 1,s25u2(x,y), where the average is ove
both space and time. The second physical quantity is
pressureP that must be exerted on the walls to maintain t
average water spacinga. The pressure is a sum of two com
ponents:P1 , caused by collisions and equal to a tempo
average of ad-function-like instantaneous pressure, andP2 ,
which is due to noncontact interactions with the walls, a
that varies smoothly with time and position. A virial theore
argument can be used to computeP1 . The general result is

P5FN2kBT22Ū

2aL2 2
1

2aL2 E u
]w

]u
dx dyG2

]w~u,a!

]a
,

~3!

whereP1 is the term in square brackets. The relative imp
tance ofP1 andP2 depends on the potential. If the potenti
is completely steric~hard wall!, then P250. However, we
have found that for the more realistic potentials considere
this paperP1 is very small compared toP2 because there ar
very few hard collisions.

III. FOURIER MONTE CARLO METHOD

The membrane displacementu(x,y) is represented by its
Fourier amplitudesu(QW ), whereQW 5(2pm/L,2pn/L), N is
the total number of modes in each dimension, and2N/2
11<m,n<N/2. Reality of the displacementu(x,y) is guar-
anteed by requiringu(2QW )5u* (QW ). Also, note thatu(QW
50)Þ0 allows the center of gravity to fluctuate away fro
the midplane between the walls.

Using the standard Metropolis algorithm, the simulati
attempts to vary one Fourier amplitude, picked randomly
a time. The initial step sizes, which depend uponQW , are
determined using a simplified form of the analytic theory@5#.
After a certain number of Monte Carlo steps~MCS!, step
sizes are adjusted using dynamically optimized Monte Ca
~DOMC! @17#. Step size optimization results in a
acceptance-rejection ratio of about 1/2, thereby minimiz
the autocorrelation timet. In practice, because the initia
values are already based on a reasonably good approx
tion, DOMC adjustment does not significantly improve t
efficiency.

The change in bending energy in Eq.~1! after attempting
a step inu(QW ) is KcL

2Q4/2 times the change inuu(QW )u2,
which requires little time to compute. In contrast, calculati
the change in the interaction energy with the walls require
real-space representation ofu(x,y). However, it is not nec-
essary to use a fast Fourier transform~FFT! routine because
the linearity of the Fourier transform requires only recomp
ing one Fourier term in order to updateu(x,y). The time this
takes is onlyO(N2) compared toO(N2 ln N) for a standard
FFT routine. Incremental addition errors are negligible
the longest runs when double precision is used; alternativ
one could perform FFT at long intervals to control such
error. The natural choice is made to approximate the inte
tion integral over the membrane by a sum over a set
equally spaced points (Li /N,L j /N), with 0< i , j ,N.

o
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TABLE I. Representative simulation results for two interactions.

N L ~Å! s ~Å! P (ergs/cm3)
MCS,
103 ts2 tP

A51, H50, Kc51 @18#, l51.8 Å, T5323 K, a520 Å
4 700 4.077460.0018 123 0106170 500 1.59 1.35
6 700 4.276760.0034 156 1006400 100 1.44 1.18
8 700 4.337660.0028 173 7006400 100 1.19 0.96
8 700 4.336660.0013 173 4706170 500 1.21 0.98
12 700 4.35960.008 187 00061300 10 1.16 0.97
16 700 4.379260.0034 193 8006600 50 1.08 0.88
24 700 4.386460.0024 197 9206430 30 0.946 0.768
32 700 4.39960.011 201 50061900 6260 1.43 1.41
32 700 4.397660.0030 200 6006500 20 000 0.955 0.741

A51, H53, mmax54, Kc50.1, l51.4 Å, T5323 K, a517 Å
4 350 6.090260.0027 28 0006900 500 2.46 1.03
6 525 6.109760.0029 34 4006900 200 2.74 0.96
8 700 6.122560.003 38 50061000 100 2.7 0.97
12 1050 6.12860.005 40 80061500 20 2.73 1.05
16 1400 6.127060.0026 40 0006600 30 2.35 0.86
32 2800 6.13660.003 42 0006600 6 2.65 0.89
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IV. HARMONIC INTERACTIONS
AND FINITE-SIZE SCALING

To test the simulation code and investigate converge
to an infinite, continuous membrane, it is useful to conside
harmonic interaction energy. It is also useful to relate
parameters in the harmonic potential to those in Eq.~1! by
expandingwa(u) to second order aboutu50,

wa5Al exp~2a/l!S 11
z2

2l2D2
H

12pa2 S 113
z2

a2D ,

~4!

so that the realistic Eq.~1! then takes the completely ha
monic form

W05
Kc

2 E @¹2u~r !#2d2r 1
B~a!

2 E u2~r !d2r 1w0~a!L2,

~5!

where B5(A/l)e2a/l2H/(2pa4) and w0(a)5Ale2a/l

2H/(12pa2). The exact solution~valid for finite L and
N/L! for this harmonic model is

s25
T

L2 (
qx ,qy

1

Kc~qx
21qy

2!21B
, ~6!

and

P5Ae2a/lF11
s2

2l2G . ~7!

Equations~6! and ~7! are useful in two ways. First, th
harmonic approximation given by Eq.~4! is good if s!l.
That provides a test of the correctness of the code, whic
e
a
e

is

written for the general case of realistic potentials and c
then be applied whens!l. As an example, consider
membrane with parametersN54, L5700 Å and a nonhar-
monic potential withA51, H5100 (mmax52), l510 Å,
Kc51, T5323 K, a520 Å, where@18# gives the units for
A, H, and Kc used in this paper. The simulation givess
50.339460.0004 Å and P51.287731076200 ergs/cm3.
In this case,sexact50.339 54 Å, and

P5Ae2a/lF11
s2

2l2G2
H

6pa3 F116
s2

a2G
51.287 743107 ergs/cm3, ~8!

again showing that simulation results are precise.
The second usage of Eqs.~6! and~7! is to obtains andP

as functions ofN and L through the finite sums overQW .
Simulations are always done with a finite number of Four
amplitudes and a finite-sized membrane. However, r
membranes are continuous and the relevant size may
larger than 1mm. So it is important to see how the results f
finite systems can be used to obtain quantities for denseN
→`) and large~L→`, N/L5const! systems. Equations~6!
and~7! can be used to computes(N,L) andP(N,L) numeri-
cally to examine the asymptotic behavior of these functio
The result of such analysis is an asymptotic relation

s's`2C1S L

ND 2

2C2

1

L2 , ~9!

where typicallyC1;1025 Å 21 andC2;103 Å 3. The vari-
ability caused by theC2 term is very small; typically abou
0.2% whenL>700 Å. However, theC1 term causess for a
finite membrane to vary withN as much as 20%.
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V. OBTAINING RESULTS FOR REALISTIC
INTERACTION POTENTIALS

Table I shows results for two selected nonharmonic
tentials and a variety of sizes. One may first note that
autocorrelation timests2 and tP are nearly constant with
system size. Next, convergence with increasingN and con-
stantL is shown in Fig. 2 when the van der Waals interacti
is absent. This behavior is similar to that of a harmonic
teraction. The limiting values can be estimated by fitting
curvey5y`1C2 /N21C3 /N3. The fits, shown as solid line
in Fig. 2, lead tos`54.39460.004 Å andP`5202 400
6700 ergs/cm3.

Unfortunately, one does not obtain the same asympt
behavior as in Fig. 2 when the attractive force is lar
enough that the total potential has a maximum rather tha
minimum when in the middle of the space between the wa
For instance, whenHÞ0, s first decreases withN, although
later it gradually levels off and appears to have a minimu
It is interesting that, whiles may change in an unexpecte
way asN increases, for the interaction considered, the pr
sure is still a smooth quasilinear function of 1/N2 (N→`),
as shown in Fig. 3, and its limiting value asN→` can still
be estimated by extrapolation. Despite these variations
convergence behavior, the associated changes ins become
very small and are certainly less than the desired accurac
1–2 %, so we suggest that it is sufficient to increaseN only
to the point where further increases result in changes is
andP that are less than the target precision.

The other variable that is potentially significant is the s
of the membrane. Any physical quantity may depend on h

FIG. 2. s and P vs 1/N2 for A51, H50, l51.8 Å, a
520 Å, Kc51, T5323 K, andL5700 Å.
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large the membrane is, attaining a certain limiting value
L→`. By increasingL while keeping the ‘‘density’’N/L
5const, the membrane size is determined for whichs andP
approach their limiting values sufficiently closely. As in th
case of harmonic interaction, the changes in these quant
are relatively small asL is increased. Indeed, when there
no attractive force, the changes are so small that they ca
be resolved reliably even when the estimated statistical er
are of order of 331023 Å. When the interaction is smaller
the trends become more pronounced and similar to th
seen for the harmonic potential. An example is given in F
4 which shows that for a moderate sized membrane the
sults approach smoothly and closely those for an infin
membrane (L→`). For L5700 Å the difference between
the estimated limiting value ofs and the observed one a
700 Å is less than 0.5%, while for the pressure the sa
difference is less than 5% which is about the same as
experimental uncertainty inP.

In summary, of the two factors that could affect conve
gence of simulation results, i.e.,N andL, N is most impor-
tant. L is therefore fixed, typically at 700 Å.N is increased
until the changes in quantities of interest are less than
target precision. We then fit a simple function such asy
5y`1c2 /N21c3 /N3 to the sequence of finiteN results to
estimatey` .

VI. COMPARISON OF FMC AND STANDARD
PMC METHODS

A. Basics of the PMC simulation method

The standard way to simulate membranes@7# will be
called the pointwise MC method in which the potential of t
system is given in discretized form

W5
Kc

2

N2

L2 (
i j

S (
nn

u24ui j D 2

1
L2

N2 (
i j

w~ui j !, ~10!

where(nnu is the sum of displacements of nearest neighb
of site (i , j ). For a harmonic potential,w(u)5w01Bu2/2,
and for periodic boundary conditions the exact solution
the mean-square displacement is

FIG. 3. s and P(1/N2, L5const5700 Å) for A51, H53,
mmax54, l51.4 Å, a517 Å, andKc50.1. The lines are drawn to
guide the eye.
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s25
kBT

L2 (
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1

B14KC ~N4/L4!@cos~Qx L/N!1cos~Qy L/N!22#2 , ~11!
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where Qx,y52pn/L, 2 N/211<n< N/2. As with the
FMC method, such an exact solution is useful in check
correctness of the simulation code.

The standard Metropolis algorithm is used, moving o
point at a time in the PMC method. To start the simulatio
an effectiveB is estimated using perturbation theory@5#. It is
then used in a formula that gives the mean-square fluctua
of a point ~assuming harmonic potential! about its equilib-
rium position, determined by its environment:

s local5A kBT

BL2/N2120KcN
2/L2. ~12!

Equation~12! gives the initial step size. After a certain num
ber of steps, DOMC@17# is used to compute the optimal ste
size, which is used thereafter. Some results using the P
method are presented in Table II.

B. Comparison of the FMC and PMC methods

The time required to obtain a target error is one of
issues determining the viability of any simulation techniqu
It is affected by two separate factors: the relative magnit
of random errors, and the speed at which various quanti
obtained for a finite system, converge to their values for
continuous infinite system. These factors are now conside
in detail, to demonstrate the improvements of the FM
method.

The random errors in estimated averages depend on
autocorrelation times of generated time series. These ti
are an indication of how ‘‘natural’’ the chosen basis is f
the simulated system. In the case of harmonic interactio
the variables used by FMC are exactly independent
therefore it is possible to vary each of them separately o
its whole range. Although they do become correlated

TABLE II. Real-space simulations of membranes with differe
density of points, constrained by a harmonic potential withB
58.30331011 ergs/cm4 obtained fromA51, H50, Kc51 @18#, l
51.8 Å, a520 Å. T5323 K, L5700 Å. Simulation lengths are
measured in 106 MCS.

N s ~Å! MCS MCS0.1%
a ts2

4 8.39060.005 1 0.41 4.36
6 8.48160.008 1 0.98 13.8
8 8.33260.031 0.2 2.77 41.9
8 8.34760.032 0.2 2.94 42.3
8 8.30560.010 2 2.73 39
12 8.07360.016 4 14.9 203
12 8.07060.015 4 14.6 198
16 8.0060.06 1 66 782
16 8.0760.06 1 59 709

aA simulation of approximately such length would have to be do
to attain 0.1% accuracy fors.
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realistic interactions, one would still hope that their depe
dencies are not great, and so they still represent a good b
For PMC simulations, however, the motion of any point
constrained by its environment, so one would expect
quality of time series to deteriorate as the ‘‘density’’ of th
membrane and the importance of the local environment
crease. These assertions are supported by Tables I an
which show that for FMC the autocorrelation times rema
roughly constant with increasingN, whereas for PMCts

increases asN4. A related question is how the simulatio
length ~in MCS! required to obtain a certain accuracy~cho-
sen to be 0.1%! varies with N. A straight line fit to
ln(MCS0.1%) vs lnN dependence for PMC has a slope
approximately 4~Fig. 5!. Therefore the amount of time re
quired to obtains with the same precision grows asN6 for
PMC method. A somewhat surprising result is that the len
required to achieve a given error estimate with FMC d
creases withN ~Fig. 5!. The precise law governing this de
crease is unclear because of the difficulty of estimating
tocorrelation times; one guess, supported by the four po
in the middle~N58 through 24!, is that the length decrease
as 1/AN; however, the hypothesis of the length staying a
ymptotically constant cannot be ruled out either. Becaus

FIG. 4. s and P vs 1/L2 with N/L58/700 Å for A51, H53,
Kc50.1 @17#, mmax54, l51.4 Å, anda517 Å.
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MCS ~for FMC! takes the amount of timeO(N4), the com-
putational complexity of the process generated by a Four
space simulation is onlyN3.5 or N4, assuming that the sam
error estimate is achieved. This is a significant improvem
over theN6 law for the real-space simulations.

The second factor favoring FMC concerns how clos
the bending energy is approximated by the discrete appr
mation in Eq.~10!. This can be evaluated by the exact res
for s for a harmonic model. Figure 6 shows that one requi
larger N to obtain the same precision with the discrete a
proximation to the bending energy required by the PM
method in Eq.~10! than for the true continuum model tha
can be treated naturally by the FMC method.

A specific example illustrates the preceding principles a
also gives some typical computer times for these simulatio
The example is the harmonic model with parameters give
Fig. 6. For the PMC simulation,N546 was chosen so tha
sexact(46,L5700 Å)57.7898 was within 0.5% of its value
7.7478 Å for a continuous membrane. A simulation
800 000 MCS took 9.5 h on an SGI workstation with MIP

FIG. 5. Variation withN of the simulation length MCS0.1%,
required for 0.1% precision ofs, for a PMC simulation of a har-
monic potential withA51, H50, Kc51, l51.8 Å, a520 Å, T
5323 K, andL5700 Å and for a FMC simulation for a realisti
model potential with the same parameters.

FIG. 6. Exactly computeds(N,L5700 Å) for Fourier-space
@Eq. ~6!# and real-space@Eqs.~10! and~11!# models of a harmonic
potential withB58.30331011 ergs/cm4. The other parameters ar
Kc51, T5323 K, andL5700 Å.
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R5000 1.0 CPU and 128 Mbytes of RAM, running IRIX 6
and resulted ins57.3360.19. So, 9.5 h were insufficient t
obtain s with 0.5% accuracy, and about 9.5@0.19/(0.005
37.75)#2'229 h would be required to achieve that pre
sion. Turning to FMC, forN516 the exacts57.7111 Å. A
run of 10 000 MCS yieldeds57.718460.0165 and required
only 240 sec on the same computer as the PMC simulat
One may also compare the time it takes to obtain the sa
estimates of random errors for the sameN for the two meth-
ods. To do this,N516 and a target error of about 1% we
chosen for the same interaction as before. A PMC simula
for 300 000 MCS took 1174 sec on an SGI workstation w
a similar configuration to the one used in the previous t
and resulted ins58.03260.082 Å ~tE514.7, ts25441!, a
slightly bigger error than desired. In contrast, a FMC sim
lation ~also withN516! for 2000 MCS took only 63 sec on
the same computer, and resulted ins57.67460.070 Å ~tE
52.19,ts251.44!, the random error ins now being slightly
better than the target. So, in addition to a much faster c
vergence of the expected value to one for a continuous m
brane, the FMC method is also the faster one to obtai
given estimate of stochastic errors.

VII. RESULTS AND IMPLICATIONS

A. Distribution of the membrane displacements

The functional form of the probability density functio
~PDF! is a central assumption in the perturbation theory@5#.
Also, the behavior of the PDF near the walls is significant
discussing the formal divergence of the van der Waals
tential and the importance of the hard-wall collision press
P1 . If the PDF does not decay to zero sufficiently quick
near the walls, then the value ofmmax used in the power
series expansion would be a sensitive parameter and
would expect many hard collisions with the walls. The ins
to Fig. 7 shows that the PDF decays to zero near the wall
much the way that is postulated by theory@5#. This is con-
sistent with our results thatP1 is small andmmax is an insen-
sitive parameter. This latter point is explicitly illustrated

FIG. 7. Membrane PDF for a realistic constraining potenti
A50.2, H50.5, l51.3 Å, mmax53, T5323 K, Kc50.1, a
522 Å, N532, andL5700 Å. Also shown are the Gaussian PD
corresponding tos58.0196 Å, and the approximate PDF for th
case of pure steric constraint proposed in Eq.~20! in @5#.
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Fig. 8 which shows that the results fors plateau for 6
,mmax,40; a similar plateau occurs forP. Finally, Fig. 7
shows that, away from the walls, the PDF is noticeably d
ferent from the theoretically assumed PDF@5# and it is gen-
erally different from a Gaussian.

B. P and s

For any kind of interaction, the main results to compare
experiment are the relationships between lnP anda, ands
and a. Figure 9 shows lnP and s for several values ofa.
Two interaction types are considered:A51, H54, l
51.8 Å, Kc50.2 and the same set withH50. These figures
also show the results obtained from the first-order pertur
tion theory@5#. The largest differences with the simulation
occur at largera and whenH is nonzero. In particular, the
theory underpredicts the value ofa at P50 when no osmotic
pressure is applied. Overall, however, the theory pred
trends quite well.

C. Comparison to experiment

Recently, it has been proposed that the pressure du
fluctuations,Pfl , can be obtained from x-ray line shape da
@1#. The derivation involves the use of harmonic Cai
theory @12,15#, which yields

Pfl52S 4

p

kBT

8 D 2 1

Kc

ds22

da
, ~13!

wheres is obtained from

s25h1D2/p2, ~14!

where h1 is the Caille parameter determined by the li
shape. The experimental data for three different lipids in
cated that Pfl could be represented by an exponent
exp(2a/lfl), in agreement with the result of perturbatio
theory @5#, but thatlfl was significantly greater than 2l in-
stead of exactly 2l given by perturbation theory. Since ne

FIG. 8. The relationship between the number of terms in
expansion approximating van der Waals potential ands, for the
parameter setA51 Å, H56, l51.8 Å, Kc50.2, T5323 K, a
513 Å, L5700 Å. The line is drawn to guide the eye.
-

o

a-

ts

to

i-
l

ther the perturbation theory nor the harmonic interpretat
of the data are necessarily correct, it is valuable to test th
predictions using simulations.

Figure 10 shows two ways of obtainingPfl from the simu-
lations. The first way uses the definition

P5Pfl1Pb , ~15!

whereP is the total osmotic pressure andPb is the pressure
with no fluctuations, i.e., for the membrane exactly in t

e

FIG. 9. s(a) and lnP(a), obtained from a simulation forA
51, H54, l51.8 Å, Kc50.2, and also forH50 ~all other param-
eters being the same! and corresponding results from the perturb
tion theory@5#.

FIG. 10. Simulation results forPfl vs a for A51, H54, Kc

50.5 @17#, l51.8 Å. Solid circles showPfl obtained from Eq.~15!
with a slopelfl54.1 Å. Open circles showPfl obtained from Eq.
~13! with a slopelfl54.6 Å.



e
in
ca
t.
e

n
lly

er

ll.
u
st

g
o

ter
of a
o-

en-
of
ntial
m-

d-
em-
ted

ac-
ng
as
nt

888 PRE 58NIKOLAI GOULIAEV AND JOHN F. NAGLE
middle of the space between the two walls withu(x,y)50.
The second way uses Eq.~13!. Figure 10 shows that the
simulatedPfl can be reasonably represented by an expon
tial using either method of computation, thereby support
both theory and experiment. Either method gives de
lengthslfl that exceed 2l, thereby supporting experimen
The two results forPfl in Fig. 10 do not, however, agre
perfectly, and the discrepancy grows for larger values ofa.
This is not surprising because the harmonic approximatio
better for smalla and progressively breaks down, especia
when the bare potential no longer has a minimum atz50.
This discrepancy suggests that one should expect some
when subtractingPfl obtained from Eq.~13! from P in Eq.
~15! to obtainPb , although the error is encouragingly sma
Nevertheless, future work in this direction can employ sim
lations to correct this discrepancy and to allow a better e
mate ofPb from which Ph , l, andH are obtained@1#.

VIII. CONCLUSIONS

This paper solves accurately a model of constrained sin
membrane fluctuations. The new FMC simulation meth
R

ys
al
ed

ep
s

ea

fo

d

la
ho
o
.

.

n-
g
y

is

ror

-
i-

le
d

provides a way to simulate accurately, with modest compu
resources, the pressure and mean-square fluctuation
simple membrane between two hard walls with realistic p
tentials. This method is clearly superior to the more conv
tional PMC simulation method. Used with typical values
interaction parameters, it supports the idea of the expone
decay of fluctuational pressure, lending credibility to a si
plified interpretation of x-ray scattering data in@1#. Finally,
the method, with minor modification, may be applied to stu
ies of more complicated models, such as a stack of m
branes or models of charged lipids and more sophistica
data analysis.
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