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Simulations of a single membrane between two walls using a Monte Carlo method
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Quantitative theory of interbilayer interactions is essential to interpret x-ray scattering data and to elucidate
these interactions for biologically relevant systems. For this purpose Monte Carlo simulations have been
performed to obtain pressui® and positional fluctuations. An alternative method, called Fourier Monte
Carlo (FMC), that is based on a Fourier representation of the displacement field, is developed and its superi-
ority over the standard method is demonstrated. The FMC method is applied to simulating a single membrane
between two hard walls, which models a stack of lipid bilayer membranes with nonharmonic interactions.
Finite-size scaling is demonstrated and used to obtain accurate valuBsdnd o in the limit of a large
continuous membrane. The results are compared with perturbation theory approximations, and numerical
differences are found in the nonharmonic case. Therefore the FMC method, rather than the approximations,
should be used for establishing the connection between model potentials and observable quantities, as well as
for pure modeling purposepS1063-651X98)10107-1

PACS numbd(s): 87.10+€, 02.70.Lq

I. INTRODUCTION Fourier representation for the displacement of the membrane

rather than the customary pointwise representation, which

Recent research on lipid bilayef&] has contributed to will be called the PMC method. The main advantage of the
the important biological physics goal of understanding and=MC method is that the optimal step sizes do not decrease as
guantifying the interactions between membranes by providmore and more amplitudes are considered. In contrast, in
ing high resolution x-ray scattering data. From these data theMC simulations, the optimal step sizes decrease as the in-
magnitude of fluctuations in the water spacing betweenverse of the density of points in one dimension, because the
membranes in multilamellar stacks is obtained. This enablesending energy becomes large when single particle excur-
extraction of the functional form of the fluctuational forces, sions make the membrane rough_ Because of this, re|ative|y
originally proposed by Helfricl2] for the case of hard con- |arge moves of the whole membrane are possible with the
finement. For systems with large water spacings, the Helfriclizpmc method, but not the PMC method. This produces rapid
theory has been experimentally confirmi@]. For lecithin = sampling of the whole accessible phase space, while respect-
lipid bilayers, however, the water spacing is limited to 20 Aing the membrane’s smoothness. The resulting time series

or less. For this important biological model system, our datahave moderate autocorrelation tirf&§ that do not increase

show that a theory of soft confinement with a different func'substantially as the membrane gets larger and/or more am-

tional form is necessary; this is not surprising because 'nte.r'litudes are taken into account. Even though each Monte

bilayer interactions consist of more than hard-wall, i.e., stenc[C)arlo step takes longer, FMC still outperforms PMC by a

interactions. id in_ It then b ible t t subst
The theory of soft confinement is even more difficult thanV'9€ margin. en becomes possible fo carry out substan-
tial simulations on a standalone workstation rather than a

the original Helfrich theory of hard confinement. Progress . )
has been made by modeling the stack of interacting flexiblSUPercompute7] and to obtain accurate results for a single

membranes by just one flexible membrane between two rigiggnembrane subject to realistic potentials wi_th wals, and even
walls [4,5]. Even with this simplification, however, the for a stack of such membrané® be described in a future

theory involves an uncontrolled approximation using first-Paper [8].
order perturbation theory and a self-consistency condition in Section Il defines the membrane model and the physical
order that the interbilayer interaction may be approximatedjuantities simulated in the paper. Section Il describes the
by a harmonic potentigl5]. We have obtained inconsistent FMC method and also gives some important details that are
results when applying this theory to our datmpublishegl used to speed up the code. In Sec. IV the method is tested on
Possible reasons afi the theory is quantitatively inaccurate an exactly solvable model, namely, one that has only har-
or (ii) the single membrane model is too simple. The imme-monic interactions with the walls. This test also allows ex-
diate motivation for this paper is to test possibility. amination of the system properties and the convergence of
In order to obtain accurate results for a system with real=MC results for an infinitely large, continuous membrane. In
istic nonharmonic potentials, we use Monte CafMC) Sec. V the FMC method is applied to a single membrane
simulations. The particular MC method developed in thiswith realistic, nonharmonic interactions with the walls. Sec-
paper will be called the FMC method because it uses théon VI makes a detailed comparison of the FMC method and
the standard PMC method. This section shows that the FMC
method not only converges faster to average values for con-
*Electronic address: gouliaev@andrew.cmu.edu tinuous membranes, but also gives smaller stochastic errors.
"Electronic address: nagle@andrew.cmu.edu Finally, Sec. VII compares simulation results with those ob-
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L The first important quantity, obtained directly from the
simulation, is the mean-square fluctuatiof in the water
spacing. In Fig. 1g2=u?(x,y), where the average is over

A
v

a u(x,y) both space and time. The second physical quantity is the
/T\ pressureP that must be exerted on the walls to maintain the
YN N ‘\ average water spacirgg The pressure is a sum of two com-

ponents:P,, caused by collisions and equal to a temporal
average of as-function-like instantaneous pressure,
which is due to noncontact interactions with the walls, and
4—9){ that varies smoothly with time and position. A virial theorem
Y ' argument can be used to compte. The general result is
FIG. 1. Fluctuating single membrane, constrained between two
hard walls. NZkgT—2U 1 aw aw(u,a)
|7 2alZ  2al? f UGn a4y~ 55
tained using the analytic first-order theory of Podgornik and &)
Parsegiari5] and from experimenil].

whereP, is the term in square brackets. The relative impor-
tance ofP, andP, depends on the potential. If the potential
At the atomic scale a lipid membrane is composed ofiS completely sterighard wal), then P,=0. However, we
Comp|ex ||p|d molecules and many simulations are perha.ve found that for the more realistic potentlals considered in
formed at this scald9—11]. However, for modeling the this paperP, is very small compared t8, because there are
structure factor for low angle x-ray scatterifig contrast to ~ Very few hard collisions.
modeling the form factor it is customary and appropriate
[12-15 to model the membrane as an infinitely thin flexible
sheet as shown in Fig. 1.
The membrane undulates with instantaneous fluctuations The membrane displacemantx,y) is represented by its

in the z direction, given byu(x,y), subject to periodic Fourier amplitudesi(Q), whereQ=(27m/L,27n/L), N is
boundary conditions. The model enefg¥is a sum of bend-  the total number of modes in each dimension, anti/2
ing energy with a bending modulus; and an energy of +1<m n<N/2. Reality of the displacemen(x,y) is guar-

interaction with the walls, anteed by requiringi(— Q)= u*(Q). Also, note thatu(Q
K =0)#0 allows the center of gravity to fluctuate away from
WZ_CJ Au)2dx d +f w.(u)dx dv. 1 the midplane between the walls.
2 (Au) y a(W) ¥ @ Using the standard Metropolis algorithm, the simulation
attempts to vary one Fourier amplitude, picked randomly, at
Since each wall is a surrogate for a neighboring membrane ig time. The initial step sizes, which depend up@n are
a stack, and since it is desired to obtain physical propertiegetermined using a simplified form of the analytic thef¥
per membrane, the interaction potential is given by the averafter a certain number of Monte Carlo steflICS), step
age W,(u)=[V(a+u)+V(a—u)]/2 of the interactionsV  sjzes are adjusted using dynamically optimized Monte Carlo
with each wall and the corresponding volume of the systeMpOMC) [17]. Step size optimization results in an

per membrane is theml?. For a separation between awall  acceptance-rejection ratio of about 1/2, thereby minimizing
and the membrane the interaction potential will be based ofhe autocorrelation time. In practice, because the initial

Il. SINGLE MEMBRANE SYSTEM

Ill. FOURIER MONTE CARLO METHOD

the standard form values are already based on a reasonably good approxima-
tion, DOMC adjustment does not significantly improve the
_ . efficiency.
V(z)=Ahe 12772’ 2) The change in bending energy in E@) after attempting

a step inu(Q) is K.L2Q%?2 times the change itu(Q)|?,
where the first term on the right hand side is a repulsivewhich requires little time to compute. In contrast, calculating
hydration potentia[5] and the last term is an approximate, the change in the interaction energy with the walls requires a
attractive van der Waals potential. The divergence in the vaneal-space representation ufx,y). However, it is not nec-
der Waals potential ag—0 in Eq. (2) is quite artificial; essary to use a fast Fourier transfoflFT) routine because
physically, it is masked by stronger steric repulsions at smalthe linearity of the Fourier transform requires only recomput-
z [16]. This is corrected in this paper by including only a ing one Fourier term in order to updatéx,y). The time this
finite number of termsn,,,, in a power series expansion of takes is onlyO(N?) compared tdD(N? In N) for a standard
1/z2 aboutu=0. It is shown later that a wide range wf,,, ~ FFT routine. Incremental addition errors are negligible for
gives nearly the same result, 8%,,4 iS not a critical param- the longest runs when double precision is used; alternatively,
eter and power series suffice to represent the van der Waatse could perform FFT at long intervals to control such an
potential satisfactorily for the most probable valuegzdfut  error. The natural choice is made to approximate the interac-
avoid including artificial traps near the walls. Other formstion integral over the membrane by a sum over a set of
besides Eq(2) can be treated as well. equally spaced pointd{/N,Lj/N), with 0<i,j<N.
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TABLE |. Representative simulation results for two interactions.

883

MCS,
N L (A) o (A) P (ergs/cri) 10° T,2 o
A=1,H=0,K,=1[18], \=1.8 A, T=323K,a=20 A
4 700 4.07740.0018 123 016:170 500 1.59 1.35
6 700 4.27670.0034 156 108:400 100 1.44 1.18
8 700 4.3376:0.0028 173 708400 100 1.19 0.96
8 700 4.3366:0.0013 173 478:170 500 1.21 0.98
12 700 4.359-0.008 187 0081300 10 1.16 0.97
16 700 4.37920.0034 193 808600 50 1.08 0.88
24 700 4.38640.0024 197 926430 30 0.946 0.768
32 700 4.399-0.011 201 5081900 6260 1.43 1.41
32 700 4.3976:0.0030 200 608:500 20000 0.955 0.741
A=1,H=3 my,=4, K.=01,A=14 A T=323K,a=17 A

4 350 6.0902-0.0027 28 008-900 500 2.46 1.03
6 525 6.10970.0029 34 408-900 200 2.74 0.96
8 700 6.1225-0.003 38 506-1000 100 2.7 0.97
12 1050 6.128:0.005 40 806:1500 20 2.73 1.05
16 1400 6.1276:0.0026 40 006:600 30 2.35 0.86
32 2800 6.1360.003 42 006600 6 2.65 0.89

IV. HARMONIC INTERACTIONS
AND FINITE-SIZE SCALING

written for the general case of realistic potentials and can
then be applied whemr<\. As an example, consider a

. . . . membrane with parametedé=4, L=700 A and a nonhar-
To test the simulation code and investigate convergence onic potential withA=1, H=100 (M, .=2), A\=10 A,

to an infinite, continuous membrane, it is useful to consider @, - N . .
harmonic interaction energy. It is also useful to relate the =1, T=323K, a—_ZOA, where[18] gives the units for
A, H, andK; used in this paper. The simulation gives

parameters in the harmonic potential to those in @g.by 7
: _ =0.3394-0.0004 A and P=1.2877x 10"+ 200 ergs/cr
expandingw,(u) to second order abouwt=0, In this case o= 0.339 54 A, and

2 2

A
wo,=AN exp(—a/N)| 1+ —2)——2 1+3—], 2 2
a 2\ 127a a P:Aefa/)x 1_'_0-_2 _ 3 1+60-_2
(4) 2\ 6ma a
=1.287 74< 10 ergs/cn, )

so that the realistic Eq(l) then takes the completely har-
monic form
again showing that simulation results are precise.
The second usage of Eq$) and(7) is to obtaino andP
KC 2 242 B(a) 2 2 2 . - =
Wo==- f [Vou(n)"dr+ —— f us(r)dr+wp(a)L”, as functions ofN and L through the finite sums ove.
(5) Simulations are always done with a finite number of Fourier
amplitudes and a finite-sized membrane. However, real
membranes are continuous and the relevant size may be
larger than Jum. So it is important to see how the results for
finite systems can be used to obtain quantities for deNse (
—o0) and large(L — o0, N/L=cons} systems. Equation®)
and(7) can be used to computeN,L) andP(N,L) numeri-

where B=(A/N)e ¥ *—H/(27wa%) and wy(a)=Are @
—H/(127a?). The exact solutionvalid for finite L and
N/L) for this harmonic model is

, T 1 cally to examine the asymptotic behavior of these functions.
7712 q% m (6)  The result of such analysis is an asymptotic relation
x 1y C\MX y
and L\?2 1
O'%O'OC—Cl(N) -C, 2 9
2
(o
P=Ae ¥ 1+ 53| (7)

where typicallyC;~10"° A1 andC,~10* A3. The vari-
Equations(6) and (7) are useful in two ways. First, the ability caused by th&, term is very small; typically about
harmonic approximation given by E@) is good if o<<\. 0.2% whenL =700 A. However, theC, term causes for a
That provides a test of the correctness of the code, which inite membrane to vary withh as much as 20%.
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6.8 . . 6
——o[A]

—o— P [erg/cm?3]

[ewo/Bie c01] d

1/N2

FIG. 3. ¢ and P(1/N2, L=const=700 A) for A=1, H=3,
Mma—=4 A=1.4 A, a=17 A, andK,=0.1. The lines are drawn to
guide the eye.

large the membrane is, attaining a certain limiting value as
L—oo. By increasingL while keeping the “density”N/L
=const, the membrane size is determined for whicind P
approach their limiting values sufficiently closely. As in the
case of harmonic interaction, the changes in these quantities
are relatively small ag is increased. Indeed, when there is
no attractive force, the changes are so small that they cannot
0.00 001 002 003 004 005 006 007 be resolved reliably even when the estimated statistical errors
1/N2 are of order of 3% 103 A. When the interaction is smaller,
the trends become more pronounced and similar to those
FIG. 2. o and P vs IN® for A=1, H=0, A\=1.8A, a  geen for the harmonic potential. An example is given in Fig.

P[105 erg/cm3]

=20 A, K;=1,T=323K, andL=700 A. 4 which shows that for a moderate sized membrane the re-
V. OBTAINING RESULTS FOR REALISTIC sults approach smoothly and closely those for an infinite
INTERACTION POTENTIALS membrane [(—x). For L=700 A the difference between

the estimated limiting value ofr and the observed one at

Table | shows results for two selected nonharmonic po7o0 A is less than 0.5%, while for the pressure the same
tentials and a variety of sizes. One may first note that thjifference is less than 5% which is about the same as the
autocorrelation times,2 and 7p are nearly constant with experimental uncertainty iR.
system size. Next, convergence with increadihgnd con- In summary, of the two factors that could affect conver-
stantL is shown in F|g 2 when the van der Waals interactiongence of simulation resultS, |e\|, and |_, N is most impor-
is absent. This behavior is similar to that of a harmonic in-ant | is therefore fixed, typically at 700 AN is increased
teraction. The limiting values can be estimated by fitting theyntil the changes in quantities of interest are less than the
curvey=y..+C,/N?+C3/N°. The fits, shown as solid lines target precision. We then fit a simple function suchyas
in Fig. 2, lead t00.,.=4.394-0.004 A andP..=202400 =y _4c,/N%+c,/N® to the sequence of finit8 results to
+700 ergs/cm estimatey.. .

Unfortunately, one does not obtain the same asymptotic
behavior as in Fig. 2 when the attractive force is large
enough that the total potential has a maximum rather than a VI. COMPARISON OF FMC AND STANDARD
minimum when in the middle of the space between the walls. PMC METHODS
For instance, whehl #0, o first decreases witN, although A Basics of the PMC simulation method
later it gradually levels off and appears to have a minimum. '
It is interesting that, whiler may change in an unexpected  The standard way to simulate membrar@$ will be
way asN increases, for the interaction considered, the prescalled the pointwise MC method in which the potential of the

sure is still a smooth quasilinear function oNf/(N—o),  system is given in discretized form

as shown in Fig. 3, and its limiting value &k—oo can still

be estimated by extrapolation. Despite these variations in K. N? 2 |2

convergence behavior, the associated changestiecome W=—>12 ; (% u—au;| + 32 ; w(uij), (10

very small and are certainly less than the desired accuracy of

1-2 %, so we suggest that it is sufficient to increlsenly
to the point where further increases result in changes in whereX, ,u is the sum of displacements of nearest neighbors

andP that are less than the target precision. of site (i,j). For a harmonic potentialy(u)=wgy+ Bu?/2,
The other variable that is potentially significant is the sizeand for periodic boundary conditions the exact solution for
of the membrane. Any physical quantity may depend on howthe mean-square displacement is
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, keT 1

777 2 B+4Kc (NYL[ cof QL/N) +cof Q,L/N) —2]%"

(11)

where Q,,=2mn/L, —N/2+1<n<N/2. As with the realistic interactions, one would still hope that their depen-
FMC method, such an exact solution is useful in checkingdencies are not great, and so they still represent a good basis.
correctness of the simulation code. For PMC simulations, however, the motion of any point is
The standard Metropolis algorithm is used, moving oneconstrained by its environment, so one would expect the
point at a time in the PMC method. To start the simulation,quality of time series to deteriorate as the “density” of the
an effectiveB is estimated using perturbation the¢B}. Itis =~ membrane and the importance of the local environment in-
then used in a formula that gives the mean-square fluctuatioorease. These assertions are supported by Tables | and II,
of a point (assuming harmonic potentiahbout its equilib- which show that for FMC the autocorrelation times remain

rium position, determined by its environment: roughly constant with increasiny, whereas for PMCr,,
increases adl*. A related question is how the simulation

kgT length (in MCS) required to obtain a certain accura@ho-

Tlocal™ BL2/NZ+ 20K N%/L? (12) sen to be 0.1% varies with N. A straight line fit to

IN(MCS;.106) Vs INN dependence for PMC has a slope of
Equation(12) gives the initial step size. After a certain num- approximately 4(Fig. 5. Therefore the amount of time re-

ber of steps, DOMG17] is used to compute the optimal step quired to obtaino with the same _p_recision grows aR for
size, which is used thereafter. Some results using the pMmEMC method. A somewhat surprising result is that the length
method are presented in Table II. required to achieve a given error estimate with FMC de-

creases wittN (Fig. 5. The precise law governing this de-
, crease is unclear because of the difficulty of estimating au-
B. Comparison of the FMC and PMC methods tocorrelation times; one guess, supported by the four points
The time required to obtain a target error is one of thein the middle(N= 8 through 24, is that the length decreases
issues determining the viability of any simulation technique.as 1A4/N; however, the hypothesis of the length staying as-
It is affected by two separate factors: the relative magnitudgmptotically constant cannot be ruled out either. Because 1
of random errors, and the speed at which various quantities,
obtained for a finite system, converge to their values for the 6.14
continuous infinite system. These factors are now considered 3
in detail, to demonstrate the improvements of the FMC 6.13 EE E
1

method.

The random errors in estimated averages depend on the 6.12
autocorrelation times of generated time series. These times 3
are an indication of how “natural” the chosen basis is for 6.11 E
the simulated system. In the case of harmonic interactions,
the variables used by FMC are exactly independent and 6.10
therefore it is possible to vary each of them separately over E

o [A]

its whole range. Although they do become correlated for 6.09 E
TABLE Il. Real-space simulations of membranes with different 6.08 . L . L . L . L
density of points, constrained by a harmonic potential with
=8.303x 10" ergs/cr obtained fromA=1, H=0, K,=1 [18], A 45— T y T y T y —
=18A,a=20A. T=323 K, L=700 A. Simulation lengths are L ;
measured in 1OMCS. { E ]
40 E ]
N o (R) MCS MCS 102 - T | ] :
o [ ]
4 8.390+0.005 1 0.41 4.36 > asf T ]
6 8.481+0.008 1 0.98 13.8 [} [ ]
8 8.332:0.031 0.2 2.77 41.9 S
8 8.3470.032 0.2 2.94 42.3 : 30k ]
8 8.305-0.010 2.73 39 [ E ]
12 8.073:0.016 14.9 203 [

16 8.00-0.06 66 782 0.0 2.0x10-6 4.0x10-6 D 6.0x106 8.0x10-6
16 8.07-0.06 59 709 1/ L2[A]

@A simulation of approximately such length would have to be done  FIG. 4. ¢ andP vs 1L2 with N/L=8/700 A forA=1, H=3,
to attain 0.1% accuracy far. Ke=0.1[17], Mpa=4, A=1.4 A, anda=17 A.

2
4 3

12 8.070:0.015 4 14.6 198 25 R S S
1
1
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E o e YT 2 o _ —— Simulation }
336MF © FMC 3 0.05F : 3
E o PMC . 3 i / Gaussian ]
1 E 2 A L Diffusion Eq
sAME ; 0.04 F E
2 2IME y 3 5
o° . 0.03F 3
O 5243kE 3 o E ]
p= E . Q E
: ] 0.02 E
18LIkE 3 :
3 o 3 F
328k © ° o o o3 0.01F
4 8 l 16 l 32 >
N 0.00
FIG. 5. Variation withN of the simulation length MG,
required for 0.1% precision af, for a PMC simulation of a har-
monic potential withA=1, H=0, K,=1, \=1.8 A, a=20A, T FIG. 7. Membrane PDF for a realistic constraining potential.
=323 K, andL=700 A and for a FMC simulation for a realistic A=0.2, H=0.5, A=1.3A, m,,=3, T=323K, K.=0.1, a
model potential with the same parameters. =22 A, N=32, andL=700 A. Also shown are the Gaussian PDF,

corresponding tar=8.0196 A, and the approximate PDF for the
MCS (for FMC) takes the amount of im®(N%4), the com-  €ase of pure steric constraint proposed in &) in [5].

putational complexity of the process generated by a Fourierrs000 1.0 CPU and 128 Mbytes of RAM, running IRIX 6.2
space simulation is oni}™>or N%, assuming that the same and resulted inr=7.33+0.19. So, 9.5 h were insufficient to
error estimate is achieved. This is a significant improvemengptain o with 0.5% accuracy, and about P0519/(0.005
over theN® law for the real-space simulations. X 7.75)]2~229 h would be required to achieve that preci-
The second factor favoring FMC concerns how closelysion, Turning to FMC, foiN= 16 the exactr=7.7111 A. A
the bending energy is approximated by the discrete approxyn, of 10 000 MCS yielded= 7.7184+ 0.0165 and required
mation in Eq.(10). This can be evaluated by the exact resultony 240 sec on the same computer as the PMC simulation.
for o for a harmonic model. Figure 6 shows that one requiregone may also compare the time it takes to obtain the same
largerN to obtain the same precision with the discrete ap-ggtimates of random errors for the sahéor the two meth-
proximation to the bending energy required by the PMCqqq T¢ do thisN=16 and a target error of about 1% were
method in Eq.(10) than for the true continuum model that .hosen for the same interaction as before. A PMC simulation
can be treated naturally by the FMC method. for 300 000 MCS took 1174 sec on an SGI workstation with
A specific example illustrates the preceding principles and, gimjlar configuration to the one used in the previous test
also gives some typical computer times for these simulations,nq resulted irr=8.032+0.082 A (re=14.7, 7,2=441), a
The example is the harmonic model with parameters given iiyjignly bigger error than desired. In contrast, a FMC simu-
Fig. 6. For the PMC simulatior=46 was chosen so that |a(on (also withN = 16) for 2000 MCS took only 63 sec on

Texac(46L =700 A)=7.7898 was within 0.5% of its value {he same computer, and resultedoir 7.674+0.070 A (7¢
7.7478 A for a continuous membrane. A simulation of_519 , 2=1.44), the random error ir now being slightly

800 000 MCS took 9.5 h on an SGI workstation with MIPS peer than the target. So, in addition to a much faster con-

vergence of the expected value to one for a continuous mem-
sk AR A A A A ] brane, the FMC method is also the faster one to obtain a
L - —FMC | given estimate of stochastic errors.

] VII. RESULTS AND IMPLICATIONS

8o} . N .
i ) A. Distribution of the membrane displacements

The functional form of the probability density function
L ] (PDP is a central assumption in the perturbation thel&rly
75 1 Also, the behavior of the PDF near the walls is significant in
[ ] discussing the formal divergence of the van der Waals po-
tential and the importance of the hard-wall collision pressure
I T P,. If the PDF does not decay to zero sufficiently quickly
[ o e e R e M5y near the walls, then the value @iy, used in the power
series expansion would be a sensitive parameter and one
would expect many hard collisions with the walls. The inset
FIG. 6. Exactly computedr(N,L=700A) for Fourier-space !0 Fig. 7 shows that the PDF decays to zero near the walls in
[Eq. (6)] and real-spacEEgs.(10) and(11)] models of a harmonic much the way that is postulated by thedBj. This is con-
potential withB=8.303x 10! ergs/cri. The other parameters are sistent with our results th&; is small andm,,,, is an insen-
K.=1, T=323K, andL=700 A. sitive parameter. This latter point is explicitly illustrated in

o [A]
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3.0 P e e e T T T T T T
- - | ! ] 4 6 B Simulation results: &
29 i ® H=4 0 H=0 L
’ P2 theory ]
5F H=d ----- H=0 . 4
2.8 . °
27 . <L 4T 1
s. @)
b 26 - 3F .
25 - ol 4
2.4 J
......... [T TTTETETE PN RET PR T T
0 10 20 30 40 50 161 -
mmax
__ 14t .
FIG. 8. The relationship between the number of terms in the & -
expansion approximating van der Waals potential andor the L sl J
parameter seA=1A, H=6, A\=1.8A, K.=0.2, T=323K, a g
=13 A, L=700A. The line is drawn to guide the eye. E i . |
Fig. 8 which shows that the results fer plateau for 6
<Mpax<40; a similar plateau occurs fd?. Finally, Fig. 7 8r i

shows that, away from the walls, the PDF is noticeably dif- 10 12 14 1I6 18 20 22
ferent from the theoretically assumed P8} and it is gen- o
erally different from a Gaussian. a[A]

FIG. 9. g(a) and InP(a), obtained from a simulation foA
B. P and & =1,H=4,\=1.8 A, K,=0.2, and also foH =0 (all other param-
For any kind of interaction, the main results to compare tceters being the samend corresponding results from the perturba-
experiment are the relationships betweePlanda, ando  tion theory[5].

anda. Figure 9 shows If? and o for several values oé. . o .
Two interaction types are consideredk=1, H=4, » ther the perturbation theory nor the harmonic interpretation

=1.8 A, K,=0.2 and the same set with=0. These figures ©f the data are necessarily correct, it is valuable to test these

also show the results obtained from the first-order perturbaPredictions using simulations. o _
tion theory[5]. The largest differences with the simulations ~ Figure 10 shows two ways of obtainifiy, from the simu-
occur at larger and whenH is nonzero. In particular, the lations. The first way uses the definition

theory underpredicts the value @fat P=0 when no osmotic

pressure is applied. Overall, however, the theory predicts P=Py+ Py, (19

trends quite well.
whereP is the total osmotic pressure aRy is the pressure

C. Comparison to experiment with no fluctuations, i.e., for the membrane exactly in the

Recently, it has been proposed that the pressure due to T T T T T T

fluctuations,Py, can be obtained from x-ray line shape data L) ]
[1]. The derivation involves the use of harmonic Caille -
theory[12,15, which yields [ °
& 14} g ]
5 4 kgT\2 1 do 2 1 5§ i
=778 ) k. da -
2 g5k * e -
whereo is obtained from ‘3:-"_ [ * .
- L [ ]
%= 7,D? 7, (14 12 . . . . i

10 12 14 16 18 20 22
where 7, is the Caille parameter determined by the line a [A]

shape. The experimental data for three different lipids indi-

cated thatPy could be represented by an exponential FiG. 10. Simulation results foPg vs a for A=1, H=4, K,
exp(—a/\g), in agreement with the result of perturbation =0.5[17], A=1.8 A. Solid circles showP; obtained from Eq(15)
theory[5], but that\y was significantly greater tham2n-  with a slopex;=4.1 A. Open circles showy; obtained from Eq.
stead of exactly R given by perturbation theory. Since nei- (13) with a slopex;=4.6 A.
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middle of the space between the two walls witfx,y)=0.  provides a way to simulate accurately, with modest computer
The second way uses E@L3). Figure 10 shows that the resources, the pressure and mean-square fluctuation of a
simulatedPy can be reasonably represented by an exponersimple membrane between two hard walls with realistic po-
tial using either method of computation, thereby supportingentials. This method is clearly superior to the more conven-
both theory and experiment. Either method gives decayional PMC simulation method. Used with typical values of
lengths Ay that exceed X, thereby supporting experiment. interaction parameters, it supports the idea of the exponential
The two results forPq in Fig. 10 do not, however, agree decay of fluctuational pressure, lending credibility to a sim-
perfectly, and the discrepancy grows for larger values.of pjified interpretation of x-ray scattering datalit]. Finally,

This is not surprising because the harmonic approximation ighe method, with minor modification, may be applied to stud-
better for smalla and progressively breaks down, especiallyas of more complicated models, such as a stack of mem-

when the bare potential no longer has a minimunzal.  pranes or models of charged lipids and more sophisticated
This discrepancy suggests that one should expect some ernglia analysis

when subtracting?; obtained from Eq(13) from P in Eq.
(15) to obtainPy, although the error is encouragingly small.
Nevertheless, future work in this direction can employ simu-
lations to correct this discrepancy and to allow a better esti-
mate ofPy, from which P,,, \, andH are obtained1].
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